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We report a docking and comparative molecular similarity indices analysis (CoMSIA) study of progesterone
receptor (PR) ligands with an emphasis on nonsteroids including tanaproget. The ligand alignment generation,
a critical part of model building, comprised two stages. First, thorough conformational sampling of docking
poses within the PR binding pocket was made with the program GOLD. Second, a strategy to select
representative poses for CoMSIA was developed utilizing the FlexX scoring function. After manual
replacement of five poses where this approach had problems, a significant correlation (r2 ) 0.878) between
the experimental affinities and electrostatic, hydrophobic, and hydrogen bond donor properties of the aligned
ligands was found. Extensive model validation was made using random-group cross-validations, external
test set predictions (rpred

2 ) 0.833), and consistency check between the CoMSIA model and the PR binding
site structure. Robustness, predictive ability, and automated alignment generation make the model a potential
tool for virtual screening.

Introduction

Progesterone is an essential hormone for the regulation of
female reproductive function. Its central role in women’s health
establishes several therapeutic uses for synthetic substances that
either mimic or counteract the effects of progesterone. The
former are referred to as progestins and the latter as anti-
progestins. There are many clinical applications for progestins,
e.g., in oral contraceptives, hormone-replacement therapies, and
treatment of certain reproductive disorders. Thus far, indications
for antiprogestin use are rather limited and primarily focus on
medical termination of pregnancy although new clinical ap-
plications for antiprogestins are emerging.1

The biologic effects of progesterone as well as synthetic
progestins and antiprogestins are elicited via the progesterone
receptor (PR) (Figure 1). PR belongs to the steroid receptor
family, which is a member of the nuclear receptor (NR)
superfamily of ligand-dependent transcription factors. PR bind-
ing compounds initiate their actions by binding to the ligand
binding domain (LBD) of the PR three-domain structure, which
is common to all NRs. Binding-induced conformational changes
in the LBD structure result in recruitment of coregulators leading
to an alteration of transcriptional activity. PR ligands (agonists,
partial agonists, and antagonists) modulate the transcriptional
activity of PR by inducing different conformations of the
coregulator binding surface of LBD. The structural modifications
taking place in PR LBD upon agonist binding are well
documented,2-5 whereas those for antagonist binding are not
resolved. Some compounds, known as the selective progesterone
receptor modulators (SPRMs), induce mixed agonist/antagonist
effects, which are thought to depend on cell type specific
promoter context6 and coactivator-to-corepressor ratios.7,8 Bind-
ing of such compounds may bring about conformational changes
different from pure agonists and antagonists.

Currently all the PR LBD targeted compounds in clinical use
are steroids. Drugs with steroidal core often display significant
cross-reactivity with closely related steroid receptors, namely,

androgen receptor (AR), glucocorticoid receptor (GR), and
mineralocorticoid receptor (MR). This functional overlap is
partly responsible for the side effects linked with the steroidal
drugs. Although the LBDs and the ligand binding pockets
(LBPs) of steroid receptors, particularly of PR, GR, and AR,
are very similar and share common ligand binding features, there
are enough differences that enable discovery of receptor-
selective compounds. It is well established that reduced cross-
reactivity is most easily attainable with nonsteroidal compounds.
Therefore, considerable effort has been placed on identification
of nonsteroidal PR binding compounds with improved selectivity
profiles.

During the past decade a number of experimental structure-
activity relationship (SAR) studies have become available on a
few classes of nonsteroidal PR modulators, which have recently
been reviewed by Winneker et al.9 Here, we describe the results
of the three-dimensional quantitative structure-activity relation-
ship (3D QSAR) analysis of a fraction of experimental SAR
data provided in the literature.10-14 The primary objective with
3D QSAR modeling was to identify the physicochemical
properties that have a substantial effect on the binding affinity
of the ligands included in the analysis. An additional goal was
to derive a 3D QSAR model of PR ligands that is comparable
to our recently published 3D QSAR model of nonsteroidal AR
ligands.15 The modeling procedure was analogous to the
previous analysis. Comparative molecular similarity indices
analysis (CoMSIA)16 was applied as the 3D QSAR method, and
molecular docking with the program GOLD17 was used as the
method to predict the binding modes of the investigated PR
ligands within the LBP and to align the ligands for model
building. Combining docking to 3D QSAR analysis is advanta-
geous because it allows direct visualization and interpretation
of modeling results within the binding site, thereby revealing
the ligand-receptor interactions contributing positively or
negatively on binding affinity. These modeling results are
discussed thoroughly in relation to the PR LBP structure. The
results are also compared with the structure and binding mode
of a high-affinity nonsteroidal PR agonist, tanaproget, which
has recently been solved in complex with PR LBD.5 To the
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best of our knowledge, this is the first report within PR research
where the binding properties of nonsteroidal PR ligands are
studied with a 3D QSAR method.

Results and Discussion

Ligand and Protein Structures. We gathered a panel of 74
structurally and pharmacologically diverse PR binding com-
pounds for the 3D QSAR analysis from five publications
reported by one laboratory10-14 (Tables 1-3). Because of similar
experimental procedures applied for affinity determination in
each publication, the biological data (represented asKi values)
were considered comparable and thus merged into our study.
Structurally the compounds are of nonsteroidal nature, except
progesterone and medroxyprogesterone acetate. The nonsteroidal
compounds represent several different, albeit fairly similar, core
structures. Such structural diversity of the ligands used to build
the 3D QSAR model is of utmost value if the model is to be
used in virtual screening applications, as is our intention.
Pharmacologically the majority of the compounds exhibit
antagonistic effects of various strengths in cotransfected CV-1
cells, although the entire range of activities from agonists to
partial agonists and antagonists are represented in the compound
set. Inclusion of all functionalities into model building is
motivated by a hypothesis that ligand recognition (binding)
depends primarily on the key atomic interactions between the
ligand and the receptor.

The mechanism for PR antagonism and the structural
modifications taking place upon antagonist binding to PR LBD
are incompletely understood.18-20 Antagonists included in the
ligand set do not have structural features that would cause the
LBP to undergo major conformational changes, like increase
in its volume. All included antagonist and agonist ligands com-
pete against the high-affinity agonist ligand ([3H]progesterone)
in the binding assays. The readout from the binding assay
reflects the ability of the ligands to replace atomic interactions
of progesterone from the agonist bound conformation of PR
LBD and therefore does not primarily depend on their phar-
macological functionality. As a result, the experimental binding
data on agonists and antagonists can be combined and used in
the statistical analysis that is dependent on the structural

modeling results. This is exactly how we proceeded when
modeling the 3D QSAR of AR ligands.15

An interesting feature of the nonsteroidal PR antagonists
studied here is that they are of equal or even smaller size than
the studied PR agonists. The small nonsteroidal PR antagonists
fit nicely into the binding pocket of the agonist structure of PR
LBD. For these reasons, we used a protein model based on the

Figure 1. (A) Progesterone receptor ligand binding domain structure in the agonist-bound conformation. The nonsteroidal tanaproget agonist and
the three residues in (B) and (C) are shown as sticks. (B) A close-up view of the docking-derived ligand alignment used in 3D QSAR analysis. (C)
Superimposition of the cocrystallized tanaproget from the X-ray structure 1zuc (green) and the best docking solution of tanaproget (gray). The
picture was generated with PyMOL.42

Table 1. Structures of Nonsteroidal Ligands1-25

compd R1 R2 R3 R4 R5 X pKiExp
b pKiPred

c

1a,d H H H H H CH2 7.85 7.84
2d H H H H CH2OH CH2 7.91 8.12
3d H H H COCH3 H CH2 6.75 6.83
4d H H H NO2 H CH2 8.44 8.64
5d H H H Br H CH2 7.62 7.67
6d H H H Cl H CH2 7.54 7.87
7d H H H F H CH2 8.46 8.44
8a,d H H H H F CH2 8.64 8.25
9d H F H H H CH2 7.95 8.22
10d H F H H F CH2 8.51 8.56
11d H H F NO2 H CH2 8.72 8.93
12d F H H F H CH2 8.82 8.25
13d H H H H H O 6.74 7.21
14d H H H H H NH 6.95 6.92
15d H H H H H CdO 5.45 5.58
16a,d H F H H H CdO 7.54 7.21
17d H H H H H CH2 7.89 7.82
18d H H H NO2 H CH2 7.24 7.07
19d H H H Br H CH2 6.7 6.9
20d H H H H F CH2 7.81 7.73
21d H H F NO2 H CH2 7.01 7.34
22d F H H F H CH2 7.68 7.67
23d H H H H H O 7.11 7.44
24d H H H H H NEt 6.77 6.78
25d H H H H H NBu 7.11 7.08

a Compound that belongs to the test set.b Experimental binding affinity
(pKi). c Predicted binding affinity (pKi). d Reference 10.
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agonist structure of PR LBD5 in aligning the ligands with
docking (Figure 1).

Alignment Generation. There are two stages in our align-
ment generation process. First, the docking program GOLD17

was used for conformational sampling of possible ligand binding
poses within PR LBP. Second, a scoring function was applied
to predict the bioactive conformation of each ligand among the
generated docking poses. Prior to docking, a small modification
in the LBP structure was made to slightly enlarge the volume
of the binding cavity. The change involved replacement of the
Met801 side chain conformation observed in the X-ray structure
with another rotamer. This alteration allowed inclusion of a few

bulkier compounds13 into the 3D QSAR analysis. The research
group, the ligand data of which are used in our study, has
reported additional data on nonsteroidal PR modulators13,21-23

that could not be included in this work because of their large
size. More drastic modifications made to the LBP would have
rendered the binding site too spacious for the smaller compounds
and the docking results less reliable. The structural water
molecule, which is found present in nearly every ligand-
complexed NR LBD structure, was included as part of the
protein structure in the docking simulations.

Generation of the correct spatial alignment of the investigated
compounds for 3D QSAR analysis is of vital importance, since
the correctness of the analysis is dependent on the quality of
the alignment. This challenging step is often impeded by the
lack of data on biologically active conformations of the
compounds in complex with their target protein. The growing
amount of structural data on small compounds cocrystallized
with their receptor proteins is, however, becoming available.
While we were starting our project, Zhang et al.5 reported the
first cocrystal structure of a nonsteroidal tanaproget agonist with
PR LBD, which revealed structural information relevant for
modeling the 3D QSAR of nonsteroidal PR ligands.

Tanaproget has a structure related to the structures of many
of the nonsteroids in the study and serves as a good indicator
for binding interactions of such compounds. Thus, the crystal
structure of tanaproget was used to evaluate the quality of

Table 2. Structures of Nonsteroidal Ligands26-72

compd R1 R2 R3 pKiExp
b pKiPred

c compd R1 R2 R3 pKiExp
b pKiPred

c

26d H H 6.88 7 50a,f H H H 7.08 6.44
27d F H 6.74 7.2 51f H H F 7.71 7.56
28d F F 8 7.73 52f H H Cl 7.89 7.68
29a,d CN H 7.72 7.34 53f H H Br 7.82 7.61
30d CN F 8 7.75 54f F H H 6.61 6.79
31d NO2 H 7.7 7.76 55a,f Cl H H 6.56 6.46
32d NO2 F 8.3 8.18 56f H H Me 7.35 7.04
33a,e H CHO H 7.43 7.08 57f H H OMe 7.07 7.36
34e H CN H 8.46 7.78 58f H H NO2 8.17 8.07
35e Me CN H 7.51 7.78 59f H OMe H 6.45 6.24
36e Me CN Me 7.44 7.99 60f F H F 7.87 8.09
37a,e H H H 6.63 6.92 61a,f F H Cl 8.25 7.64
38e H H Me 7.6 7.28 62f F H Br 7.91 7.67
39e H Br H 7.49 7.72 63f F H CN 8.35 8.11
40e Cl H H 7.92 7.5 64f Me H Cl 6.69 7.21
41e Br H H 7.51 7.04 65f OMe H Br 6.32 6.3
42e CHO H H 7.1 7.36 66f F CHO Br 6.54 6.41
43e NO2 H H 8.59 8.09 67g H H F 8.21 8.05
44e CN H H 7.26 7.44 68g Br H F 8.68 8.69
45e CN H Br 6.36 6.46 69g CN H F 7.35 7.49
46e CN Br H 6.6 6.3 70g n-Pr H F 8.51 8.58
47e CN H Me 7.59 7.67 71a,g Et Me F 8.1 7.76
48e H CN H 7.91 7.84 72g Me Et F 7.78 7.83
49e CN H Me 8.41 8.08

a Compound that belongs to the test set.b Experimental binding affinity (pKi). c Predicted binding affinity (pKi). d Reference 11.e Reference 14.f Reference
12. g Reference 13.

Table 3. Structures of Steroidal Ligands73 and74

compda pKiExp
b pKiPred

c

73d 8.46 8.43
74d 9.47 9.53

a Neither compound in this table belongs to the test set.b Experimental
binding affinity (pKi). c Predicted binding affinity (pKi). d Reference 13.
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docking results. Tanaproget itself was not included in the 3D
QSAR analysis because no comparable binding data were
available. Despite the change in Met801 side chain conformation
and thus a small increase in LBP volume, GOLD was successful
in docking tanaproget close to its crystallographically determined
bioactive conformation (Figure 1). The heavy atom root-mean-
square deviation (rmsd) for the docking solution closest to the
crystal structure of tanaproget was 0.338 Å. Such proximity
can be regarded as a good reproduction of the crystal structure.
We therefore believe that the binding conformations of the
analogous ligands analyzed here are reasonably well predicted
by GOLD. Several evaluations of the docking accuracy of
commonly used docking programs have concluded that many
programs are able to reproduce the crystallographically deter-
mined binding modes, GOLD being one of the most reliable
docking programs.24-26

We aimed at generating the alignment as automatically and
objectively as possible by using a single scoring function to
select a top-ranked docking pose from all the poses generated
for each ligand. However, none of the explored scoring functions
described in the methods section resulted directly in an
alignment that provided a statistically meaningful correlation
between the structural features and the measured binding
affinities of the ligands. Even if the docking programs perform
well in generating the correct bioactive conformation of a ligand,
the current scoring functions are less successful at correctly
identifying it. A number of evaluations have been published
on the ability of scoring functions to distinguish the correct
bioactive conformation from the ensemble of docked poses.25-27

Major differences in performance have been documented.
Availability of data on experimentally resolved protein-ligand
interactions within binding sites of different chemical nature
sets the limits for the quality of scoring functions that have been
created this far. Many of the scoring functions do reasonably
well in predicting polar interactions, whereas the hydrophobic
interactions are often more problematic. Because the LBP of
PR is fairly hydrophobic, we were not surprised that all scoring
functions assessed had difficulties in directly producing a ligand
alignment that would have resulted in a significant 3D QSAR
model. However, FlexX score has been shown to have a higher
success rate at identifying the correct ligand-receptor interac-
tions in hydrophobic ligand binding sites than the other scoring
functions that we tried.26

The determination of the best docking program and scoring
function combination for providing the most accurate binding
mode prediction is case-specific. We therefore used tanaproget
docking results to guide the selection of the most suitable scoring
function for our case. We examined the ability of different
scoring functions to identify the best tanaproget docking solution
with the lowest rmsd value from its crystallographically
determined conformation. FlexX28,29 and PMF30 scoring func-
tions managed to recognize the lowest rmsd result as the single
best docking pose, while XScore31 identified two other solutions
with higher rmsd values that are equally good. From a statistical
point of view, the initial alignment based on FlexX selection
provided by far the best starting point for 3D QSAR model
building. Consequently, we selected the representative docking
poses using FlexX scoring function.

Five of the training set compounds (compounds3, 36, 44,
46, 74 in Tables 1-3) did not align properly with others in the
initial alignment, which is based on the automatic selection of
docking poses with the best FlexX scores. However, the
differences in the FlexX predicted interaction energies between
the top-ranked poses from the best-scoring and the second-best-

scoring ensembles of docking poses generated by GOLD for
these five compounds were marginal (-2.2 kcal/mol on average)
when the inaccuracy of the current scoring functions is
considered. By taking those conformations into the model, a
significant correlation with the experimental binding affinities
was achieved. The replacement of docking poses resulted in a
better overall superimposition and prevented the compounds
from becoming outliers. As a result, all 64 training set
compounds were included in the 3D QSAR model.

3D QSAR Analysis.To examine the structural and chemical
features contributing to the biological activity of the studied
ligands, the alignment derived from docking simulations was
quantitatively analyzed using the CoMSIA procedure.16 The
structure-activity relationships were best explained with the
electrostatic, hydrogen bond donor, and hydrophobic properties
of the ligands. Electrostatic and hydrogen bond donor fields
constitute the most important descriptors to the information
content of the CoMSIA model, while the hydrophobic field plays
a somewhat smaller role. In fact, the electrostatic field seems
to be essential for building a model from this compound set
because no statistically significant model could be derived
without it. The contributions of the electrostatic, hydrogen bond
donor, and hydrophobic fields to the CoMSIA model are 42%,
36%, and 22%, respectively.

To determine the quality of the model, one initially needs to
consider the statistical values obtained from the PLS analysis.
The statistical quality and the robustness of the model were
determined with internal cross-validation procedures. Internal
validation using leave-one-out (LOO) cross-validation gave a
correlation coefficientq2

LOO of 0.637 and a standard error of
prediction (SDEPLOO) of 0.480. A more rigorous cross-validation
using 10 random groups yielded an averageq2

10 of 0.601 and
SDEP10 of 0.501, and use of five random groups yielded an
averageq2

5 of 0.563 and SDEP5 of 0.525. The nonvalidated
PLS analysis gave a correlation coefficientr2 of 0.878 and a
standard error of estimate (SEE) of 0.278. Theq2 andr2 values
of this magnitude reflect a statistically significant and robust
model.

The most rigorous test for the predictive ability of the model
was done with the 10 external test set compounds, which were
completely excluded from model building but were processed
in the same way as the training set compounds. The chosen
test set provides both structurewise and activitywise a good
representation of the compounds used to build the model. Both
high- and low-affinity compounds within the test set were
predicted close to their experimentally measured binding
affinities, yielding a predictiver2 of 0.833 with a SEE of 0.294.
Hence, besides the good statistical quality, the model also shows
excellent predictive properties. Experimental and predicted
affinities for all the compounds are presented in Tables 1-3.
The predicted affinities are plotted against the experimental
affinities in Figure 2.

Visualization and Interpretation of the 3D QSAR Model
with Respect to PR LBP. The reliability of our model also
necessitates complementarity relative to the binding site structure
because the model was derived from a ligand alignment
generated with docking. To resolve whether the model derived
from the superimposed ligands is in consensus with the receptor
structure, the statistically relevant data of the CoMSIA model
are visualized as 3D contour maps inside the LBP. Analysis of
the contours with respect to the chemical environment of the
LBP will then reveal the true quality of the model. The
visualization of the CoMSIA model consisting of electrostatic,
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hydrogen bond donor, and hydrophobic fields is represented
with the LBP residues in Figure 3.

Electrostatic Field. Electrostatic field is the major contributor
to the information content of our CoMSIA model. Interpretation
of the electrostatic fields in relation to the almost entirely
hydrophobic PR LBP structure is, however, rather complex. To
interpret these fields, one needs to consider, besides their
complementarity with the binding site structure, the electrostatic
properties (electron distribution) of the molecules within the
ligand set.

Next to the structural water molecule at the bottom of the
binding pocket there is a small volume that is indicated by the
CoMSIA model to be favorable for negative partial charge. This

map is in accordance with the chemical environment of the
receptor structure. The end of the binding pocket has a minor
positive charge due to Arg766 and thus forms constructive
interactions with the negatively charged moieties of ligands.
This map also agrees with the experimental SAR data, which
show a decrease in affinity with decreasing electronegativity
of the aromatic ring substituents.10-12,14 The space behind the
volume favoring negative partial charge displays a larger volume
favoring positive partial charge. This volume should be inter-
preted in conjunction with the volume favoring negative partial
charge. The binding affinity is enhanced by the presence of
strongly electron-withdrawing substituents in the aromatic ring.
Correspondingly, the ring structure becomes electron-deficient
and is left with a partial positive charge. The more electro-
negative is the substituent, the more positive is the charge
presented by the ring and the stronger is the predicted binding
affinity. Together, these two electrostatic fields indicate that a
charge polarization (local dipole), which is present at the end
of the ligand and positioned at the bottom of the LBP, will
enhance binding affinity.

In the middle of the binding pocket there is a small favored
volume for negative partial charge. The superimposed ligand
set contains a few high-affinity molecules (e.g.,58, 63, 68, and
70 in Table 2) that have an oxygen atom close to this volume.
The oxygen exists in a chroman-like ring structure, where it is
connected to a six-membered ring system associated with
benzene. It is well-known that oxygens present in highly
conjugated aromatic systems are poor hydrogen bond acceptors,
since the electron density of oxygen can delocalize. Thus, we
suspect that oxygens present in such a position in these
compounds are of hydrophobic nature and that the favored

Figure 2. Correlation between the experimental and predicted activities
(pKi) for the training set ([) and the test set compounds (0).

Figure 3. Stereoviews of the 3D contour maps of the CoMSIA model within the PR LBP represented as stdev*coeff plots. The most important
LBP residues (sticks) are shown with the crystallographically determined conformation of tanaproget (ball-and-stick). The structural water is shown
as a red sphere. (A) The red contours (contoured at-0.04 kcal/mol) indicate volumes where negative potential in ligands increases binding affinity;
blue contours (+0.06 kcal/mol) indicate volumes where positive potential increases binding affinity. (B) The cyan contour (+0.15 kcal/mol) represents
a region where hydrogen bond donors in ligands enhance affinity; purple contours (-0.05 kcal/mol) represent regions where hydrogen bond donors
are detrimental to affinity. The yellow contours (+0.015 kcal/mol) correspond to regions where hydrophobicity in ligands increases binding affinity;
green contours (-0.03 kcal/mol) correspond to regions where hydrophilic elements increase binding affinity.
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electrostatic field volume shown in the CoMSIA model is an
artifact arising from the point charge used for the calculation
of electrostatic fields. This conclusion is supported by the protein
structure. Within 5-6 Å there are no residues that would benefit
from the partial negative charge in this volume. However, this
volume has only a small contribution to the prediction of binding
affinity. A change of oxygen to carbon, e.g., in compound70,
causes the predicted activity (pKi) to drop from 8.58 to 8.39,
which is within the margin of error of the model.

At the other end of the binding pocket, next to the electron-
deficient side of the Tyr890 phenyl ring, the model displays a
favorable volume for partial negative charge. This region is able
to interact with electron-rich chemical entities of ligands. The
volume is therefore in agreement with the receptor structure.
Furthermore, experimental structure data support the presence
of this volume because its position encompasses the space
occupied by the electron-rich oxygen of the benzoxazine ring
of tanaproget.5

Hydrogen Bond Donor Field. According to the CoMSIA
model, there is one volume in the LBP where the hydrogen
bond donor presented by the ligand is favorable for binding
affinity. This volume coincides with the region around residues
Asn719 and Cys891. The volume agrees with the LBP structure
because both residues, particularly Asn719, are willing to accept
a hydrogen bond. However, hydrogen-bonding to these residues
cannot be considered essential for high-affinity binding because
the endogenous ligand, progesterone, shows aKi value in the
nanomolar range13,14but according to the X-ray structures does
not form such an interaction to either Asn719 or Cys891.2,3 Nor
does the molecular dynamics simulations predict any notable
hydrogen-bonding between progesterone and LBP at this
location.32 Yet one can expect hydrogen-bonding to Asn719 or
Cys891 to increase ligand binding affinity to PR. This is
observed in the binding of tanaproget to PR LBD, where
tanaproget offers its benzoxazine NH for hydrogen-bonding with
Asn719.5

Two unfavorable volumes for donor interactions are displayed
close to the favored volume. One of the volumes lies partly on
top of the Asn719 side chain and points toward the planes of
the peptide bond formed between Leu718 and Asn719 and the
backbone hydrogen bond formed between Leu715 and Asn719.
The other unfavorable volume for donor interactions extends
toward the plane of the aromatic ring of Phe905 and the side
chain of Ile913. Both of the binding cavity surfaces surrounding
these two volumes are of hydrophobic nature and do not present
any good hydrogen bond acceptors to pair with ligand donors.
Therefore, a donor group presented to these regions by the ligand
will also have an affinity-reducing effect according to the protein
structure. Essentially, the positions of these two unfavorable
volumes point out the importance of directionality for hydrogen-
bonding interactions.

Hydrophobic Field. The CoMSIA model indicates three
volumes where hydrophobic elements in the ligands are favored
and enhance binding affinity. The first favored volume for
hydrophobic interactions is situated at the bottom of the binding
pocket, next to the structural water molecule. This volume partly
overlaps with the electrostatic volume favoring partial negative
charge, suggesting that electron-withdrawing moieties with
hydrophobic properties are preferred at this site. This is in line
with the experimental affinity measurements.10 The other two
volumes favoring hydrophobicity are located on opposite sides
from each other in the central part of the LBP. One of the
volumes is lined by side chains of residues Val760, Leu763,
Met801, and Leu887, while the side chains of residues Leu718,

Leu721, and Met759 and the plane of the peptide bond between
Leu721 and Gly722 form the borders of the other volume. All
the residues contribute to the formation of hydrophobic surfaces
in the middle of the LBP, thus complementing the favored
hydrophobic volumes. In the cocrystal structure of tanaproget
with PR LBD, the methyl group extending from the cyano-
pyrrole ring accommodates the latter volume while Met801,
which was modified in our work, extends toward the binding
cavity and partly fills the previous volume.5

The model also specifies a rather small volume where
hydrophobicity is disfavored and hydrophilicity is associated
with an increase in binding affinity. The volume favoring
hydrophilic elements is found at the bottom of the binding
pocket, next to the side chains of Gln725, Arg766, and the
structural water molecule. This is one of the most hydrophilic
surfaces of the LBP and therefore able to interact with polar
parts of ligands.

Conclusions
In our study we have utilized the 3D QSAR method of

CoMSIA to explore the receptor-ligand interactions influencing
receptor binding affinity of PR ligands, placing an emphasis
on the nonsteroidal PR binding compounds. The analysis was
performed on a series of 74 publicly available PR binding
compounds comprising 72 nonsteroids. The selected series of
compounds represents a variety of pharmacological function-
alities and several structural scaffolds. A 3D QSAR model
generated from such a diverse set of compounds has the capacity
for identifying PR binding compounds without discriminating
between the different functional activities of the compounds.

The investigated compounds were superimposed for 3D
QSAR analysis using molecular docking. By combining docking
into 3D QSAR analysis, we connected the PR LBP structure
into alignment generation. The alignment, on the other hand,
served as the basis for statistical analysis in which the structural
differences of the ligands were related to the variations in their
experimentally observed binding affinities. The ligand alignment
generated within the PR LBP resulted in a statistically significant
3D QSAR model, and the contour maps, which visualize the
regions of structural features explaining the variance in the
binding affinity, nicely complement the structural elements of
PR LBP. Together, these results indicate that the alignment
comprises biologically active conformations of the PR ligands,
thus confirming the accuracy of the alignment. This in turn
suggests that the entire docking procedure, including the protein
structure used, is valid.

Besides studying the features affecting the binding affinity
of nonsteroidal PR ligands, we aimed to create a model that is
methodwise comparable to our previously generated CoMSIA
model of nonsteroidal AR ligands. Even if the CoMSIA models
of PR and AR ligands were built using analogous modeling
procedures, the variance in the experimental binding affinities
of the PR and the AR ligands could not be explained with the
same molecular field descriptors. Undoubtedly this result is
connected to the distinct series of ligands used to build the
models, but it also indicates that there are characteristic
differences in the molecular properties of the nonsteroidal PR
and AR binding compounds, which account for their binding
to the associated receptors. A comparison of the two CoMSIA
models does not, however, provide any apparent explanation
of the receptor-ligand interactions needed for selective ligand
binding. Thus, further research is required to reveal the key
structural and chemical features behind receptor-specific binding.

Together, the two CoMSIA models and the procedure
described are applicable in virtual identification of PR and AR
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binding compounds from chemical databases. The models are
of particular advantage when used in parallel for screening of
receptor-selective nonsteroidal compounds and in the subsequent
structure-based optimization of such compounds. In the upcom-
ing virtual screening studies, we intend to apply the derived
models in predicting the binding affinities for all the poses
generated in docking simulations and use these predictions in
guiding the selection of compounds for experimental screening.
Because the CoMSIA models are generated specifically for PR
and AR from sets of known PR and AR ligands, respectively,
and because the models are consistent with their respective LBP
structures, they are well suited for binding affinity prediction
and can be perceived as receptor-specific scoring functions. The
affinity prediction by the CoMSIA models can be used as an
extension to the existing scoring functions as the only means
for affinity prediction and ranking of compounds from the virtual
databases. Thus, the created CoMSIA models are an asset in
virtual screening when the limitations of the current scoring
functions are known.

Experimental Section

Molecular Modeling. All modeling work was performed using
Sybyl, version 7.0,33 unless otherwise noted.

Protein Data. The human PR LBD structure cocrystallized with
the agonist tanaproget5 was retrieved from the Protein Data Bank34

(PDB code: 1zuc). From the crystal structure, monomer A was
selected for the docking simulations. The side chain conformation
of Met801 in the crystal structure was replaced with another one
from the rotamer library in the BODIL software35 to increase the
volume of the LBP and to allow docking of ligands larger than the
cocrystallized agonist. Tanaproget and all water molecules except
the structural water (Wat5 in 1zuc) between the Arg766 and Gln725
were removed from the protein structure. Hydrogens were added
to the protein and the water.

Ligand Data. The data for 74 ligands used in the modeling were
collected from five publications reported by one laboratory.10-14

The binding affinity values were represented asKi values deter-
mined in a competitive binding assay. Compounds lacking exact
affinity values and defined stereochemistry were excluded from
the data set, as were compounds too bulky to fit the model of PR
LBP (i.e., compounds10, 12, 18 from Zhi et al.13).

The ligands were divided into a training set of 64 compounds
and a test set of 10 compounds. The test set was selected to represent
the training set as well as possible in terms of structural composition
and activity range. Tanaproget was considered an extra test
compound used to validate the modeling procedure and to interpret
the final model because it could not be included in the model
building because of lack of comparable affinity data.

The ligands were converted into 3D structures using the program
CORINA, version 3.0.36,37 CORINA was allowed to generate a
maximum of five ring conformations while applying an energy
window of 30 kJ/mol between the highest and the lowest energy
ring conformations. This yielded three (compounds1-47 and
tanaproget), five (48-72), or eight (73, 74) initial conformations
to be used in generating the respective number of ensembles of
docking poses in docking simulations. Gasteiger-Hückel charges38,39

were calculated for each compound.
Alignment Generation. The docking program GOLD, version

2.2,17 was used to predict the binding conformations and orientations
of the compounds within PR LBP. With the default parameters of
GOLD, the docking procedure was repeated 10 times for each
CORINA-generated conformation. This resulted in 30 (compounds
1-47), 50 (48-72), or 80 (compounds73, 74) docking solutions
for every compound; i.e., 3, 5, or 8 ensembles of docking poses
for each ligand were produced. Several scoring functions, including
GOLDScore,17 XScore,31 and the individual functions integrated
within CScore,40 were attempted to produce a statistically significant
alignment. The final alignment was generated by selecting the
representative conformation for each compound as the top-ranked

pose from the best-scoring ensemble of docking poses according
to FlexX scoring function28,29 for all except five of the ligands (3,
36, 44, 46, 74). For these five compounds the top-ranked pose from
the second-best-scoring ensemble of docking poses was included
in the alignment to prevent them from being outliers.

3D QSAR Analysis.The 3D QSAR model was built by applying
the CoMSIA16 procedure on the ligand alignment obtained from
docking. The CoMSIA molecular descriptor fields were calculated
with default parameters and correlated with the variations in the
binding affinity data with partial least squares (PLS) analysis.41

Descriptor fields with standard deviation less than 2 units were
filtered out from the PLS analysis. Leave-one-out (LOO) cross-
validation was used to determine the optimum number of PLS
components. The final model was derived using the electrostatic,
hydrophobic, and hydrogen bond donor fields and six principal
components in the PLS analysis.

The predictivity of the model was validated using both internal
and external methods. LOO and random-group cross-validations
with 10 and 5 groups were applied as internal validation methods.
Each random group cross-validation was repeated 25 times to obtain
the mean values forq2 and standard error of prediction (SDEP).
External validation was performed with the test set of 10 compounds
not included in the 3D QSAR model building.
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